تخمین زمانی و مکانی بار معلق رودخانه آجی چای با استفاده از شبکه عصبی مصنوعی و مدل های کریجینگ و کوکریجینگ
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده کشاورزی
- author سمیرا طلوعی
- adviser علی حسین زاده دلیر احمد فاخری فرد
- Number of pages: First 15 pages
- publication year 1387
abstract
چکیده ندارد.
similar resources
تخمین زمانی و مکانی بار معلق رودخانه آجی چای با استفاده از زمین آمار و شبکه عصبی مصنوعی
پدیده انتقال رسوب در رودخانهها از پیچیدهترین مباحث مهندسی رودخانه بوده و همواره مورد توجه کارشناسان و مهندسین آب میباشد. یکی از مشکلات عمده که سازههای هیدرولیکی بنا شده در یک رودخانه را تهدید میکند مسأله انتقال و انباشت رسوبات میباشد. لذا ارائهی راهکارهای نوین جهت برآورد دقیق بار معلق عبوری از مقاطع مختلف رودخانهها در مقیاسهای زمانی مختلف، نقش بسزایی در پیشبرد صحیح مطالعات مهندسی رودخا...
full textتخمین زمانی و مکانی بار معلق رودخانه آجی چای با استفاده از زمین آمار و شبکه عصبی مصنوعی
پدیده انتقال رسوب در رودخانهها از پیچیدهترین مباحث مهندسی رودخانه بوده و همواره مورد توجه کارشناسان و مهندسین آب میباشد. یکی از مشکلات عمده که سازههای هیدرولیکی بنا شده در یک رودخانه را تهدید میکند مسأله انتقال و انباشت رسوبات میباشد. لذا ارائهی راهکارهای نوین جهت برآورد دقیق بار معلق عبوری از مقاطع مختلف رودخانهها در مقیاسهای زمانی مختلف، نقش بسزایی در پیشبرد صحیح مطالعات مهندسی رودخا...
full textتخمین زمانی و مکانی بار معلق رودخانه آجی چای با استفاده از زمین آمار و شبکه عصبی مصنوعی
پدیده انتقال رسوب در رودخانهها از پیچیدهترین مباحث مهندسی رودخانه بوده و همواره مورد توجه کارشناسان و مهندسین آب میباشد. یکی از مشکلات عمده که سازههای هیدرولیکی بنا شده در یک رودخانه را تهدید میکند مسأله انتقال و انباشت رسوبات میباشد. لذا ارائهی راهکارهای نوین جهت برآورد دقیق بار معلق عبوری از مقاطع مختلف رودخانهها در مقیاسهای زمانی مختلف، نقش بسزایی در پیشبرد صحیح مطالعات مهندسی رودخا...
full textبررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دستهبندیشده
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
full textمقایسه روشهای شبکه های عصبی مصنوعی، فازی-عصبی تطبیقی و منحنی سنجه رسوب در برآورد رسوبات معلق رودخانه ها (مطالعه موردی: رودخانه آجی چای)
ارائه راهکاری مناسب جهت برآورد دقیق بار معلق رودخانهها در پروژههای آبی، مهندسی رودخانه و آبیاریکاربردهای فراوانی دارد. به دلیل تأثیر پارامترهای مختلف بر انتقال رسوبات در رودخانهها، تعیین معادلات حاکم برآن مشکل بوده و مدلهای ریاضی نیز در این راستا از دقت کافی برخوردار نیستند. امروزه استفاده از سیستمهایهوش مصنوعی به عنوان راهکاری جدید در تحلیل مسائل آبی، گسترش یافته است. در تحقیق حاضر منطق فازی-ع...
full textمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده کشاورزی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023